几个重要的函数
Ⅰ. 绝对值函数
$$ f(x)=\left|x\right| = \left{ \begin{aligned} -x, x < 0 \ x, x \geq 0 \end{aligned} \right. = \left{ \begin{aligned} -x, x < 0 \ 0, x = 0 \ -x, x < 0 \end{aligned} \right.$$
连续不一定可导,可导一定连续。
Ⅱ. 最值函数
$$U = \max \left{f(x), g(x)}\right.\ V = \min\left{f(x), g(x)}\right.$$
展开得到:
$$U = \frac{f(x) + g(x) + \left \vert f(x) - g(x) \right\vert}{2} \ V = \frac{f(x) + g(x) - \left \vert f(x) - g(x) \right\vert}{2}$$
可以推出:
$$U + V = f(x) + g(x) \ U - V = f(x) - g(x) \ U \cdot V = f(x) \cdot g(x)$$
Ⅲ. 符号函数
$$f(x) = sgn \ x = \left { \begin{aligned} -1, x < 0 \ 0, x = 0 \ 1, x > 0 \end{aligned}\right.$$
Ⅳ. 取整函数
$$f(x) = \left \lfloor x \right \rfloor$$
不超过x的最大整数。
可以推出:
$$x - 1 < \left \lfloor x\right \rfloor \leq x \ \left \lfloor x + n\right \rfloor = \left \lfloor x \right \rfloor + n, n是整数$$
Ⅴ. 分段函数
$$f(x) = \left { \begin{aligned} f(x), x \leq x_0 \ g(x), x > x_0 \end{aligned}\right.$$
或
$$f(x) = \left { \begin{aligned} f(x), x < x_0 \ a, x = x_0 \ g(x), x > x_0\end{aligned} \right.$$
Ⅵ. 狄利克雷函数
$$D(x) = \left { \begin{aligned} 1 , x \in \mathbb{Q} \ 0 , x \in \mathbb{Q}^\complement \end{aligned} \right. ,\qquad \mathbb{Q}表示有理数, \mathbb{Q}^\complement表示有理数的补集$$
Ⅶ. 幂指函数
$$f(x) = u(x)^{v(x)}, u(x) > 0, 且u(x) \neq 1$$
可以推出:
$$u(x)^{v(x)} = e^{v(x) \cdot \ln u(x)}$$
用于幂指函数求导。